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A Random Utility Based Estimation Framework for
the Household Activity Pattern Problem

June 20, 2016

Abstract
This paper develops a random utility based estimation framework for the Household Activity
Pattern Problem (HAPP). Based on the realization that output of complex activity-travel deci-
sions form a continuous pattern in space-time dimension, the estimation framework is treated as
a pattern selection problem. In particular, we define a variant of HAPP that has capabilities of
forecasting activity selection and durations in addition to activity sequencing. The framework
is comprised of three steps, (i) choice set generation, (ii) choice set individualization and (iii)
multinomial logit estimation. The estimation results show that utilities for work, shopping and
disuilities for travel time, time outside home, and average tour delay are found to be significant
in activity-travel decision making.

Keywords
Household Activity Pattern Problem, Activity-Travel Patterns, Random Utility Estimation, D-
error minimization, goal programming, multinomial logit estimation
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1 Introduction and Literature Review
In the field of transportation planning and engineering, the activity-based approach continues to
generate interest in terms of model development and implementation (Pinjari and Bhat, 2011).
Activity-based models focus on travelers’ participation in activities that derive the need to travel
and therefore account for a more realistic disaggregate view of travel behavior. Instead of focus-
ing on modeling individual trips, activity-travel models describe why such trips are derived, and
more generally focus on modeling entire travel-activity patterns. Notable models include Com-
prehensive Econometric Micro-simulator for Daily Activity-travel Patterns (CEMDAP) (Bhat
et al., 2004), Florida Activity Mobility Simulator (FAMOS) (Pendyala et al., 2005), Travel
Activity Scheduler for Household Agents (TASHA) (Miller and Roorda, 2003), Household
Activity Pattern Problem (HAPP) (Recker, 1995), A Learning-Based Transportation Oriented
Simulation System (ALBATROSS) (Arentze and Timmermans, 2004), the Forecasting Evolu-
tionary Activity-Travel of Households and their Environmental RepercussionS (FEATHERS)
(Bellemans et al., 2010) and etc.

The Household Activity Pattern Problem (HAPP), is a mathematical programming approach
to travel analysis under the activity-based framework Recker (1995). According to HAPP, ac-
tivity travel patterns are the result of a household optimization with respect to a set of space-
time and resource constraints, where the objective function represents travel (dis)utility. HAPP
serves as a theoretical reasoning behind travel and activity decisions when faced with temporal
and spatial constraints, in addition to resource constraints such as travel budget and tour length
(Hägerstraand, 1970). Mathematically, HAPP is an interpretation of personal- (household-)
level daily travel posed as a variation of the well-known Pickup and Delivery Pattern Problem
with Time Windows (PDPTW) formulation.

The structure of HAPP is as follows. For details, refer to Recker (1995).

(HAPP)min
X,T

Travel Disutility (1)

A

 X
T
Y

 ≤ B (2)

Decision variableX explains spatial decisions, T represents temporal decisions of a traveler,
and Y is the tour length variable. Constraints, A,B (2) are comprised of (a) spatial constraints
and (b) temporal constraints. The objective function is represented as a weighted combination of
multiple terms that are used to capture the key essences of travel behavior. The flexible structure
of HAPP as a Mixed Integer Linear Programming (MILP) provides a good platform that is easily
extended to meet a modeler’s specific objectives while keeping the governing rules of travel and
activity decisions within the constraints imposed by time-space geography intact. Rescheduling
problem (Gan and Recker, 2008, 2013), destination choice (Kang and Recker, 2013), multi-day
(Chow and Nurumbetova, 2015), multi-modal extensions (Chow and Djavadian, 2015), activity
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arrival and duration choice (Yuan, 2014), time-dependent scheduling (Yuan, 2014) have been
proposed based on the original concept. In the application side, scenario-based assessment
studies were conducted (Kang and Recker, 2014; Chow, 2014; Recker and Parimi, 1999).

This distinct structure of HAPP brings diversity for travel demand models that are mostly
based on discrete choice or agent-based approaches. This helps bring explanations for trans-
portation issues that arguably could not have been addressed by other types of travel demand
models. For example, it is possible to simulate cases that we have no previously observed travel
demand data of, utilizing the property of HAPP that it is built from the governing rules of travel
and activity decisions within the constraints imposed by time-space geography. Despite the ad-
vantages, HAPP model has not been widely used as a forecasting tool due to the difficulty of
estimation the objective function. Forecast activity-travel decisions and activity-travel patterns
cannot be generate personalized pattern with constraints alone. The objective function of HAPP
needs personal input, specifically people’s valuation of things that influence their fundamental
activity participation and travel behavior.

One methodological challenge towards implementing HAPP as a forecasting tool is param-
eter estimation required for the linear-in-parameters objective function given a conventional
dataset of observed travel-activity decisions. These parameters reflect the weighting or value
households endogenously place on the components of the objective function. Additionally, the
constraints in the mathematical program also contain behavioral parameters that require estima-
tion, such as household time and money budgets.

Growing interest in operationalizing the HAPP model has led to three parameter estimation
procedures in the literature. Recker et al. (2008) proposed the earliest method which used a
generic-algorithm approach to fitting the objective function parameters in order to minimize the
string distances of the observed data and optimal solution to the mathematical program. Chow
and Recker (2012) developed an inverse optimization formulation to identify individual weights
of the objective function. More recently, Regue et al. (2014) proposed a calibration process
based on a differential evolution process. Each of these approaches have significantly opera-
tionalized the HAPP, but significant challenges require further attention. The above approaches
estimate the parameters for each individual household, requiring significant computational re-
sources for a conventional travel dataset which contain many households. Additionally, due
to the combinatorial nature of the HAPP, there exists an infinite number of weight combina-
tions given a range of parameter values that will ensure the optimality with respect to a given
observed pattern.

In this paper, an estimation procedure based on random utility maximization (RUM) choice
theory is developed to propvide parameter estimates for the HAPP objective function. This ap-
proach allows for a scaling of these parameters with respect to the sample dataset used through
an econometric estimation framework. Given a linear-in-parameters objective function, this
work estimates the parameters based on the observed one day activity-travel patterns in found
in conventional travel datasets (Ben-Akiva and Lerman, 1985; Train, 2009).
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2 Overview of Framework
One of the features of activity-based travel forecasting models is the continuous time frame.
The output of HAPP, as well as many other models, includes travelers’ complex decisions of
activity participation and travel, that can be represented as a continuous path in the time-space
dimension as seen in Figure (1). On a horizontal time axis, each activity engagement is repre-
sented (”H”,”T”,”W”). The spatial distance from the home location is represented in vertical
dimension. Each letter stands for the following activities: (H)ome; (T)ravel; and

H H

W

8:00 am

9:00 am 5:00 pm

6:00 pm

H H T W W W W W W W W T H H H H

Figure 1: Illustration of a Continuous Path in Space-Time and String
Representation of Activity Engagement

This study proposes a framework based on this observation that travelers’ activity-travel
decision form a continuous path, and this selection of a particular path is based on a random
utility theory (RUT). This realization also enables us to connect activity-travel decisions and
path selection procedure to existing route choice modeling studies in transportation literature.
The framework is built upon two key assumptions. First, the observed activity-travel patterns
represent the optimal decisions made for the traveler. Second, a single continuous path in
space-time dimension is a single decision output containing complex activity-travel decisions.
The observed pattern selection is modeled through a Multinomial Logit model (MNL) (Hensher
and Greene, 2003). The functional form of utility functions are assumed universal across choice
alternatives, with the attributes of utility functions similar to those in the HAPP objective func-
tion. The result of the estimated MNL gives the parameter weights we need for operationalizing
and forecasting.

2.1 Estimation Framework
In order to operationalize estimation under an RUM choice framework, the analysis framework
developed in this work is comprised of three procedures: (i) choice set generation; (ii) choice
set individualization; and (iii) parameter estimation. Figure 3 provides an overview of each
of these procedures. All RUM choice models require choice set in which actual decision and
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alternative choices are known and defined for each decision maker. Utility of each choice is
represented by weighted summation of some key attributes of this choice and the choice with
highest utility is selected. Based on the assumptions made above, an observation is regarded as
the actual decision (daily pattern) and the key attributes come from objective function of HAPP,
assuming those terms under HAPP framework capture the real-world decision mechanics. The
key challenge is the lack of choice alternatives that are generally unobservable.

Choice Set Generation Choice Set Individualization Parameter Estimation

Clustering of Patterns
Selection of Patterns

Individual Spatial and Temporal Constraints
Goal Programming of HAPP

Pattern Overlap Adjustment
Multinomial Logit Estimation

Figure 2: Estimation Framework

Choice Set Generation Under the behavioral framework for this study, travelers’ represen-
tative activity-travel patterns are modeled as a choice among a choice set of representative
patterns. Defining this choice set faced by travelers is necessary for operationalizing the RUM
choice framework requires identifying the choice set. To identify the complete set of represen-
tative activity-travel patterns, the clustering approach developed by Allahviranloo et al. (2014)
is used to identify representative patterns from observed activity-travel patterns in a conven-
tional Household Travel Survey. While a traveler’s chosen alternative is easily identified as the
observed activity-travel pattern, the alternatives are more difficult to identify. To generate the
choice set of alternatives, a pattern is drawn from each of the non-chosen representative pat-
tern clusters. The method developed optimizes the information gain (conceptualized through
the inverse Hessian matrix) from this sampling of non-chosen alternatives, more specifically a
genetic algorithm that sample non-chosen alternatives and minimizes the D-error of the final
sample.

Choice Set Individualization In this study, the choice set generation procedure samples from
other observed activity-travel patterns from other travelers in the dataset. However, this leads
to the possibility of the non-chosen alternatives being infeasible to the certain travelers. In
order to ensure that selected choice alternatives indeed are feasible for each traveler, a goal-
programming will adjust the sampled non-chosen alternatives for each traveler, with respect
to their personal space-time and resource constraints. We develop the formulation of the goal
programming, with the goal of being similar to the sampled activity-pattern, subject to an indi-
vidual traveler’s spatial constraints (through travel time matrix) and temporal constraints (work
hour duration in particular).
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Parameter Estimation Given a generated choice set of (chosen and non-chosen) alternatives
for each traveler in the sample, a choice model is estimated. The alternatives may have signifi-
cant pattern overlap, for example the timing and duration of in-home occupancy, which would
be problematic for choice models assuming the IIA property. This work also addresses meth-
ods for dealing with this overlap in choice model estimation. An analogous problem is the path
overlap problem from the route choice model estimation literature. These methods will guide
the development of these methods for dealing with pattern overlap. The advantage of the pro-
posed methodology is that any choice model formulation can be subsituted for the MNL used
in this paper. This is especially advantagous in the travel demand field which has used these
choice models extensitvely.

2.2 Utility-Based Activity Participation, Duration, and Travel Decisions
In order to highlight the forecasting capability of HAPP how, we consider the following vari-
ation. The key modeling capabilities include, activity participation decision, activity duration
decision in addition to various travel decisions and time decisions. This formulation highlights
the concepts of utility gain from performing activities and preferred arrival time. Compared to
formulation presented by Recker (1995) that only penalize travel related disutility, this formu-
lation includes utility of performing activities so that it introduces a trade-off between pursuing
utility by performing more activities and inducing more travel related disutility. That allows the
model to accommodate selection of activity participation (i.e., traveler can choose which activ-
ity to do and how long the activity should take) to achieve the best personal utility. New terms
are introduced to improve the model performance and simplify the estimation of parameters.
Similar idea can be found in Yuan (2014) and Chow and Nurumbetova (2015), both introduce
utility gain by performing activity. While Yuan (2014) focuses on activity duration choice deci-
sion and no activity selection is allowed, Chow and Nurumbetova (2015) further introduces the
concept of preferred arrival time to relax hard time window, prism of multi-day arrangement
and allows activity selection.

Notation:

• V = {1, 2, ..., |V |}: The set of vehicles available to the household;

• P+ = {1, 2, ..., n} = {W, P̂ , S}: The set of activity nodes, where W,P, S stand for
the sets of work, personal and shopping activities, respectively;

• P− = {n+ 1, n+ 2, ..., 2n}: The set of return home nodes;

• P = P+ ∩ P−: The set of all activity nodes;

• N = {0, P, 2n+ 1}: The set of all nodes, 0 is the start depot, 2n+ 1 is the final depot;
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• β̂ = {βW , βP , βS, βTT , βTOH , βTD}: The set of parameters for each objective term,
where the first three parameters stand for utility gain/hour by performing work, personal,
shopping activity and the last three stand for travel disutility incurred by total travel time,
time outside home and average trip chain delay;

• tu,w: The travel time from node u to node w; u,w ∈ N

• [au, bu]: Time Window for activity u; u ∈ W

• Lu \ Uu: The lower\upper limit for the duration of activity u; u ∈ W

• Ek \ Fk: The earliest departure time\latest arrival time for vehicle k; k ∈ V

• Xk
u,w: Binary variable, equal to unity if vehicle k travels from node u to node w;

u,w ∈ N, k ∈ V

• Tu: The variable standing for the start time of activity u; u ∈ P

• T k
0 \ T k

n+1: The time of vehicle k first departing from home\last returning to home;
k ∈ V

• Su: The variable standing for the duration of activity u; u ∈ P+

• Wu: The variable standing for waiting time after activity u; u ∈ P+

• TD: Average Trip Chain Delay.

• Iu: Binary indicator, equal to unity if u activities in P are chosen, u = 0, 1, 2, ..., n

• M : Big number

Formulation:

Max: βW
∑
u∈W

Su + βP
∑
u∈P̂

Su + βS
∑
u∈S

Su + βTT

∑
k∈V

∑
u∈N

∑
w∈N

tku,wX
k
u,w

+ βTOH(
∑
k∈V

∑
u∈N

∑
w∈N

tku,wX
k
u,w +

∑
u∈P+

Su +
∑
u∈P+

Wu) + βTDTD
(3)

8



Subject to: ∑
k∈V

∑
w∈N

Xk
u,w ≤ 1, u ∈ P+ (4)∑

w∈P+

Xk
0,w ≤ 1, k ∈ V (5)∑

u∈P−

Xk
u,2n+1 ≤ 1, k ∈ V (6)∑

w∈N

Xk
u,w −

∑
w∈N

Xk
w,u = 0, u ∈ P, k ∈ V (7)∑

w∈N

Xk
w,u −

∑
w∈N

Xk
w,n+u = 0, u ∈ P+, k ∈ V (8)∑

k∈V

(
∑
w∈P−

Xk
0,w +

∑
u∈P+

Xk
u,2n+1 +

∑
u∈N

Xk
u,0 +

∑
w∈N

Xk
2n+1,w) = 0 (9)

Tu + Su +Wu + tu,n+u ≤ Tn+u, u ∈ P+ (10)

∑
k∈V

Xk
u,w = 1 =⇒ Tu + Su +Wu + tu,w = Tw, u ∈ P+, w ∈ P (11)∑

k∈V

Xk
u,w = 1 =⇒ Tu + tu,w ≤ Tw, u ∈ P−, w ∈ P (12)

Xk
0,w = 1 =⇒ T k

0 + t0,w = Tw, w ∈ P+, k ∈ V (13)

Xk
u,w = 1 =⇒ Tu = T k

2n+1, u ∈ P−, k ∈ V (14)

Ek ≤ T k
0 ≤ T k

2n+1 ≤ Fk, k ∈ V (15)
au ≤ Tu ≤ bu, u ∈ P+ (16)∑

k∈V

∑
w∈P

Xk
u,w = 0 =⇒ Su = 0, u ∈ P+ (17)

Lu +M(
∑
k∈V

∑
w∈P

Xk
u,w − 1) ≤ Su ≤ Uu, u ∈ P+ (18)

n∑
u=0

Iu = 1 (19)

I0 = 1 =⇒ TD = 0 (20)

I0 = 1 =⇒
∑
k∈V

∑
u∈P+

∑
w∈P

Xk
u,w = 0 (21)

(22)
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For m = 1 to n

Im = 1 =⇒ TD =
1

m

∑
u∈P+

(Tn+u − Tu − Su) (23)

Im = 1 =⇒
∑
k∈V

∑
u∈P+

∑
w∈P

Xk
u,w = m (24)

End

The first three terms in the objective function stand for utility gain by performing work,
personal social and shopping activities. The other terms represent travel disutility incurred by
traveling. Total travel time, total time outside of home and average trip chain delay are penalized
respectively. Selection of disutility terms will be discussed in detail in section 5. Constraints
(4)-(9) focus on constructing the HAPP network. (4) means one activity node can be visited at
most once. (5)-(6) mean the flow leaving start depot must head to activity nodes and have to
return to final depot through return home nodes. (7) is the balance flow constraints. (8) means
an activity node and its corresponding return home node must both be visited or both not.
(9) remove unwanted flows from the network. Constraints (10)-(14) enable time transmission
through trip chain. (15)-(18) constrain the departure and arrival time for each vehicle; time
windows for certain activities; upper and lower limit for duration of each activity. (19)-(24)
applied a trick to capture the average tour delay. I variables capture the number of activities
chosen and different I variable leads to different format of TD that makes it always stand for
the average of tour delays for all chosen activities.

3 Choice Set Generation
The key challenge of estimating HAPP based on RUT is that (1) alternatives are not directly
observable and (2) there is an infinitude number of reasonable alternatives given the continuous
time dimension. While generating reasonable choice alternatives has been an integral part in
route choice modeling (Bekhor et al., 2006; Prato, 2009), the task of generating quality choice
set is even more complex and challenging.

In this study, the choice set generation procedure samples from other observed travel pat-
terns from other travelers in the dataset. A choice set will be comprised of five representative
activity-travel patterns shown in the data set. However, this leads to the possibility of the non-
chosen alternatives being infeasible to the certain travelers. In order to ensure that selected
choice alternatives indeed are feasible for each traveler, a goal-programming will adjust the
sampled non-chosen alternatives for each traveler, with respect to their personal space-time and
resource constraints. We develop the formulation of the goal programming that focuses on both
spatial constraints (through travel time matrix) and temporal constraints (work hour duration in
particular).
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3.1 2-Stage Activity-Travel Pattern Clustering
Several works investigated classification and understanding of representative/typical activity-
travel patterns (Allahviranloo et al., 2014; Recker et al., 1985). We use a 2-stage clustering
method that is modified from a single stage clustering proposed in Allahviranloo et al. (2014) to
account for both time allocation, or activity engagement and activity sequencing. Allahvi-
ranloo et al. (2014) used differences of two activity-travel patterns (measured through Sequence
Alignment Method, SAM) as features of each pattern.

A uni-dimensional string representation of activity-travel decisions is used as the basic rep-
resentation of the data. Sequence analysis has been widely used in various fields to under-
stand features, functions, structures, or evolution. Sequencing representation was first used
for activity patterns by Wilson (1998) to analyze one-dimensional activity patterns. Later,
multi-dimensional representation was used to include information of mode choice, location,
and accompanying persons (Joh et al., 2002). For this research project, we first define a repre-
sentation that includes both approaches to account for time allocation and activity sequencing.
Given the unit time stamp for 18-hour period (Starting from 6:00 pm and ending at 12:00 am),
each time stamp (5 min) labeled as activity purpose such as “Home(H)”, “Work(W)”, “Shop-
ping(S)”, “Recreational(R)”, “Personal(P)”, “Maintenance(M)”, etc., as well as travel as an
activity “Travel(T)”. An example is shown in Figure (1). Since activity purpose and duration
include decisions as well as travel decisions are all captured, Levenshtein distance (Kruskal,
1983) between every pair of observations captures the dissimilarity between them. The longer
the distance is, the more dissimilar two patterns are. All to All dissimilarity matrix got from
previous process will be features of clustering as in Allahviranloo et al. (2014).

The most widely used clustering technique is k-means. Two key concerns are, how to set
K and how to measure both time allocation and activity-travel sequencing. First, a trial and
error method is used to set K as clustering is an unsupervised learning. We initially set K to be
3, 4, 5, 6 and evaluate the clustering result one by one. Large K is not preferred for complexity
of the MNL and given the limited size of data. We calculate the average of each attribute for
each cluster and evaluate how variant the attributes of one cluster are to another. We then choose
K that yields the most distinguished clusters. In other words, clusters have very different level
of attributes so that they are not similar to each other.

To accommodate activity sequencing decision in addition to time allocation, a new string
that represents changes in activity types is generated. By simply removing all consecutive du-
plicate items in the string generated for time allocation, the new string is essentially a sequence
of activities. As an example, the string in Figure 1 is reduced to ”HTWTH”.

A sequential 2-stage method is applied for clustering. The process is presented in the fol-
lowing figure:

Time allocation and activity participation are taken into account in a sequential manner.
After clustering based on time allocation, the observations fall into each cluster are similar in
terms of time allocation but not necessarily similar in terms of activity sequencing. For exam-
ple, some activities with short duration may be pretty much ignored since there are not many
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Stage 1: Initial Clustering

Stage 2: Outlier Reassignment

Run K-means clustering
based on time allocation

with K = N.

Run K-means clustering
based on activity sequencing

with K = 1 for each cluster
rank distance to new center

from low to high, the last
50% is regarded as outliers.

Calculate distances from each
outlier to all new cluster

centers, reassign the outliers
to the closest cluster.

Figure 3: 2-Stage Clustering Method

intervals labeled by such activities. But a pattern with short-time activities may have significant
difference with another pattern in terms of activity sequencing. That’s the motivation to reas-
sign some of the observations in terms of difference of activity sequencing. After evaluating the
how variant attributes are among all clusters, the results indicate that K = 5 yields clusters that
are more different to each other.

3.2 Representative Activity-Travel Patterns
This study is based on 2000 California Statewide Household Travel Survey. For the sake of
simplicity, we only choose samples that are categorized as worker and belong to single member
household. Data points with missing information are excluded and all trips start from home and
end at home. The sample size of the study is 2183.

The following Figure 4 shows 5 cluster centers we get as representatives of patterns.
Basically we can find that centers of cluster 1 and 2 stand for two different types of full-time

workers. Center of cluster 4 is likely to represent part-time workers. Centers of cluster 3 and 5
can be interpreted as two types of patterns when the worker is not on duty. Center of cluster 3
shows that the worker tends to perform few out-of-home activities while for center of cluster 5
the worker prefers performing many selective activities.
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Figure 4: Representative Activity-Travel Patterns

3.3 Choice Set Sampling to Minimize D-error
As discussed above, the choice set of alternatives faced by travelers is typically latent or un-
observable to the analyst. We assume that travelers face a choice set of five different patterns
identified in the cluster analysis. The individual traveler chooses one type of pattern from this
choice set of five patterns. Given a sample of observed daily patterns, for each observed pattern
the cluster membership is know. The task faced is to reconstruct the choice sets by sampling
from the other clusters of pattern types. We acknowledge that some choices may be actually
infeasible because of spatial and temporal constraints (for example, a pattern might have a work
stop, but the traveler is retired). This will be addressed in Section 4

While simply sampling an observed pattern from each cluster is one possibility for con-
structing this choice set, with respect to model estimation, this selection can be more deliber-
ate, minimizing the resulting standard error of parameter estimates. From this methodological
standpoint, choice set construction aims to generate a choice set, where the observed pattern
is one alternative, and the rest are sampled from the identified clusters, so as to minimize the
inverse of the Asymptotic Variance-Covariance (AVC) matrix of parameters.

The swapping algorithm presented in the original paper cannot be adapted to our case. The
swapping algorithm works as follows: starting with initial choices, attributes are modified one
by one. D-error is calculated at each step and the algorithm terminates if D-error converges to a
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certain point. The major problem is, for the attributes associated with travel pattern, the values
cannot be modified arbitrarily since the intrinsic space and time constraints behind them might
be broken. That’s why we choose to sample one pattern from each cluster which is valid in
nature. The following equation gives the utility function of choice i:

Ui = βWWi + βSSi + βPPi + βTTTTi + βTOHTOHi + βTDTDi, i = 1, 2, .., 5; (25)

Where βW , βS, βP , βTT , βTOH and βTD stand for coefficients of the crucial attributes we
present above. They are homogeneous for all choices. Wi, Si, Pi, Ti, Ei and Di are the numeri-
cal value of attributes calculated based on pattern i.

D-error is calculated based on determinant of the inverse of AVC matrix which can only
be got once the choice set is made up. In order to make a choice set, one pattern is sampled
within each cluster except for the one observation belongs to and each cluster contains hundreds
to thousands items. Enumerating all the possibilities requires evaluation of D-error for each
instance and that makes it very computational expensive. Due to the combinatorial nature of
this problem, we choose to apply genetic algorithm to get the best available choice set within
the time range.

4 Choice Individualization via Goal Programming
The selected samples from last step are from different individuals with different personal, space
and time constraints. Although the sampled pattern should be close to the real representative
alternative the individual may face, such differences can bring noises to estimation. Both spatial
(mainly travel times) and temporal (mainly work activity) noises exists and are adjusted.

The sampled pattern is from an individual living in a totally different geographical location.
Thus, the travel time matrix input is replaced with that of the particular traveler. For cases where
full travel time information is not available, we create a travel time matrix that is plausible
from known travel times (i.e., respecting triangle inequality) as well as distribution of travel
times for activity types from the data set. The number of work activities and preferred (or
constrained) work duration come from the observation while the sampled pattern controls the
preferred arrival time for all activities and existence and duration for activities except for work.
If there is also a work activity in sampled pattern, we constraint the work duration of selected
alternative pattern by the preferred work duration of actual observation and the work start time
of the sampled pattern. Similarly, we constraint start time and duration of other activities based
on sampled pattern if existing. If an activity is not bounded by any inferred constraints, we
introduce an universal loose bound for duration of such activity in case of a giant activity is
generated without any restriction.

Using these individualized spatial and temporal constraints, the goal programming is for-
mulated to derive a feasible pattern for each traveler. The goal is to be as close as the sampled
pattern given individual temporal and spatial constraints. The formulation is as follows.
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Notations:

• P+ = {1, 2, ..., n} = {W+, O+} = {W+, P̂+, S+}: The set of activity nodes where
W+ is the set of work activities nodes and O+ is the set of optional activity nodes, which
contains P̂+ personal social activities and S+ shopping activities;

• P− = {n+1, n+2, ..., 2n} = {W−, O−} = {W−, P̂−, S−}: The set of corresponding
return home nodes;

• β̂ = {βW , βP , βS}: The set of parameters for each objective term, where βW is the
weight for time difference of work and βO is the weight for time difference of optional
activities.

• gu: The preferred arrival time for activity u;

• qu: The preferred duration of activity u;

• Lu \ Uu: Lower bound \ upper bound multipliers for preferred duration; u ∈ P+

• Tu: The variable standing for the start time of activity u;

• τ eu \ τ lu: The early\late arrival deviation with respect to preferred arrival time.

Formulation:

Min βW
∑

u∈W+∪W−

(τ eu + τ lu) + βP
∑

u∈P̂+∪P̂−

(τ eu + τ lu) + βS
∑

u∈S+∪S−

(τ eu + τ lu) (26)

Subject to:
Constraints (4)-(15)

Tu + τ eu − τ lu = gu, u ∈ P (27)
If qu 6= null Luqu ≤ Su ≤ Uuqu, u ∈ P+ (28)

The objective function minimizes the deviation between activity start times in the generated
and target patterns. Constraint (33) stands for the function form of deviation. Constraint (34)
limit the duration of new pattern with respect to the target duration and the activity type, while
generally speaking, the bound is tighter for work activities and looser for optional activities,
since work activities are usually more restrictive.

The following Figure 5 gives an real-case illustration example of how the goal programming
shapes the generated alternatives. The duration of work activities in alternative 1 and 4 is shorten
based on observed pattern, while the second work activity in alternative 4 is omitted because
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there is no such work activity observed. As is presented in previous steps, we generate a travel
time matrix in which some cells are directly extracted from observed pattern while others are
filled by sampling from distributions. In alternative 1, 2 and 3, we can see that part of the travel
times are personalized based on the generated travel time matrix that comes from observation.

H H

W

P P
S

H H

W

H H
W

H

H

P
S S

H H

S S

H H

P
S

H H

P
S

H

H

W

W
S

W
H H

S

Observed Pattern

Alternative 1

Alternative 3

Alternative 2

Alternative 4

P

Figure 5: Illustration of Choice Individualization via Goal Program-
ming
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5 Multinomial Logit Model Estimation
When selecting travel utility/disutility terms, they must be compatible with both MNL and
MILP structure. Objective terms used for previous HAPP literature (Recker, 1995; Recker
et al., 2008; Regue et al., 2014; Chow and Recker, 2012) are rather simplified to represent
real utility/disutility for the linearity and computational convenience. We introduce new more
realistic terms (Table 1) and computational solutions. Not only these terms better represent
disutility conceptually, but the improved estimation results confirm such an argument. It is
noted that formulations shown in Sections 2.2 and 4 accommodate these terms.

HAPP Literature New Proposed Terms

Total
travel time

∑
k∈V

∑
u∈N

∑
w∈N tu,wX

k
u,w

Total
travel time

∑
k∈V

∑
u∈N

∑
w∈N tu,wX

k
u,w

Extent of
the day

∑
k∈V (T

k
2n+1 − T k

0 )
Time

outside
home

∑
k∈V

∑
u∈N

∑
w∈N t

k
u,wX

k
u,w+∑

u∈P+ Su +
∑

u∈P+ Wu

Trip chain
delay

∑
u∈P+(Tn+u − Tu)

Average
trip chain

delay

∑
u∈P+(Tn+u − Tu −
Su)/#activity

Table 1: Travel Disutility Terms

In the variant version of HAPP we present, the objective function consists of utility of per-
forming activities and disutility incurred by traveling. The trade-off between these two parts
makes it possible for activity selection during the decision making process. For the utility gain
by doing work (βW ), shopping (βS) and personal social activities (βP ), they can be regarded as
independent with each other. We revised the previously used travel disutility terms to represent
more logical and realistic measurements as well as to improve the model performance. Time
outside of home excludes the time spent at home during the day that should be penalized. New
definition of trip chain delay mitigates the exaggerated effect of the previously used term when
number of activities is increased. And it excludes the duration of activities in order to avoid dou-
ble counting issue. By making these changes, we greatly reduce the correlation among travel
disutility terms and make it better fit MNL.

5.1 Pattern Overlap
Overlap among alternatives violates the IIA assumption. Since we can hardly avoid overlap
among patterns, it is necessary to capture its effect. An analogous problem is present in route
choice models (Bekhor et al., 2006; Prato, 2009). We use a similar structure to path-size logit
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or C-logit to address this overlap. The expression of probability Pi of choosing pattern i within
the choice set C is given as follows:

Pi =
Vi + βCFCFi∑

j∈C(Vj + βCFCFj)
(29)

where Vi is the observed utility.
In this work, a commodity term is defined for each choice to capture the similarity to all

other alternatives within the same choice set. The idea is similar to what we did in section 3. A
string representation is generated for each pattern. Similarity Si,j between two patterns i and j is
defined as the proportion of similarity and calculated as 1− Levinstein Distance

Maximum Possible Levinstein Distance . As the
Levinstein Distance calculates the dissimilarity between two patterns (Section 3.1), the propor-
tion of dissimilarity is calculated by using the denominator of maximum possible dissimilarity
score (i.e., two patterns are completely different). As time spent at home is very dominant for
most of people as ”Home” for night time, we restrict similarity calculation to the rest portion,
from 6AM till 12AM next day. In our data set, the earliest departure and the latest arrival back
at home were within 6AM and 12AM time window.

The overlap, which is represented by the commodity factor CF, is the average of similarity
to all other patterns in the choice set:

CFi =
∑
j

Si,j (30)

5.2 Estimation Results
As discussed before, the utility function contains two parts: the utility gain by performing
activities and the disutility incurred by traveling. For all 3 models listed, the first part of utility
gain remains the same. All activities are categorized into work, personal social activities and
shopping, the marginal gain of performing activities within the same category is regarded as the
same. The definition of travel disutility is different among 3 models. Details are shown in Table
2.

The model fit is increased while the new definitions of extent and tour delay are introduced.
Model 3 is the most preferred in the three models. First, most intercepts of utility functions are
insignificant. Since HAPP is an optimization model, intercepts have no impact on its decision
process (Constant can be removed from objective function in optimization), but does have im-
pact on the decision process of MNL, which causes bias on prediction. Secondly, overlap is
insignificant, which is also preferred because at the time of predicting one’s pattern, the alterna-
tive choices are not available. Thirdly, the signs of variables are okay. The sign of coefficients
are generally good in theory. When interpreting the results and implications, it is noted that the
”Time Outside Home” measure will relatively negate all utility gains. For example the travel
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Model 1
HAPP βW

∑
u∈W Su+βP

∑
u∈P̂ Su+βS

∑
u∈S Su+βTT

∑
k∈V

∑
u∈N

∑
w∈N t

k
u,wX

k
u,w+

βED

∑
k∈V (T

k
2n+1 − T k

0 ) + βTC

∑
u∈P+(Tn+u − Tu)

Utility Function Vi = βWWi + βSSi + βPPi + βTTTTi + βEDEDi + βTCTCi

Model 2
HAPP βW

∑
u∈W Su+βP

∑
u∈P̂ Su+βS

∑
u∈S Su+βTT

∑
k∈V

∑
u∈N

∑
w∈N t

k
u,wX

k
u,w+

βED

∑
k∈V (T

k
2n+1 − T k

0 ) + βTDTD

Utility Function Vi = βWWi + βSSi + βPPi + βTTTTi + βEDEDi + βTDTDi

Model 3
HAPP βW

∑
u∈W Su+βP

∑
u∈P̂ Su+βS

∑
u∈S Su+βTT

∑
k∈V

∑
u∈N

∑
w∈N t

k
u,wX

k
u,w+

βTOH(
∑

k∈V
∑

u∈N
∑

w∈N t
k
u,wX

k
u,w +

∑
u∈P+ Su +

∑
u∈P+ Wu) + βTDTD

Utility Function Vi = βWWi + βSSi + βPPi + βTTTTi + βTOHTOHi + βTDTDi

Table 2: Comparison of Three Models

time brings, counter-intuitively, positive utility. However, including time outside home, its sign
stays in the negative region and will be a disutility. Work, personal, and shopping all present
positive utilities after accommodating with time outside home. Personal activities bring the
most utility per time unit followed by work and shopping activities.
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Index Attributes Estimate St. Error t-value Pr(> |t|) Significance

Model 1:
2:(intercept) 0.2324 0.2315 1.0043 0.3153
3:(intercept) 3.2017 0.1526 20.9793 0.0000 ***
4:(intercept) 1.0363 0.1669 6.2094 0.0000 ***
5:(intercept) 0.5297 0.1930 2.7452 0.0060 **

Work 0.6425 0.0383 16.7740 0.0000 ***
Personal 2.3277 0.0976 23.8462 0.0000 ***
Shopping 0.6086 0.0913 6.6684 0.0000 ***

TravelTime -0.0387 0.0593 -0.6533 0.5135
Extent -0.4862 0.0337 -14.4259 0.0000 ***

TourDelay (Original) -0.0109 0.0103 -1.0572 0.2904
Overlap 16.3095 1.1121 14.6659 0.0000 ***

Log-Likelihood: -972.56
McFadden R2: 0.58687

Likelihood ratio test : chisq = 2763.2

Model 2:

2:(intercept) -0.4553 0.3634 -1.2530 0.2102
3:(intercept) 2.0047 0.2349 8.5335 0.0000 ***
4:(intercept) 0.2354 0.3475 0.6775 0.4981
5:(intercept) -0.8860 0.3534 -2.5074 0.0122 *

WorkDuration 1.1051 0.0826 13.3815 0.0000 ***
Personal 2.4920 0.1846 13.4975 0.0000 ***
Shopping 0.9702 0.1612 6.0168 0.0000 ***

TravelTime 0.2878 0.0944 3.0494 0.0023 **
Extent -0.3587 0.0569 -6.3020 0.0000 ***

TourDelay (Modified) -1.0332 0.0585 -17.6697 0.0000 ***
Overlap 6.7425 2.0765 3.2471 0.0012 **

Log-Likelihood: -259.4
McFadden R2: 0.89129

Likelihood ratio test : chisq = 4253.4
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Index Attributes Estimate St. Error t-value Pr(> |t|) Significance

Model 3:

2:(intercept) -0.6810 0.5513 -1.2354 0.2167
3:(intercept) 1.5622 0.3575 4.3704 0.0000 ***
4:(intercept) -0.5104 0.6071 -0.8407 0.4005
5:(intercept) -0.3323 0.4751 -0.6996 0.4842

Work 2.0113 0.1632 12.3251 0.0000 ***
Personal 3.4870 0.3433 10.1567 0.0000 ***
Shopping 1.8509 0.2650 6.9840 0.0000 ***

TravelTime 0.7610 0.1325 5.7442 0.0000 ***
TimeOutsideHome -0.8638 0.0873 -9.8996 0.0000 ***

TourDelay (Modified) -1.2284 0.0994 -12.3620 0.0000 ***
Overlap 4.4151 2.8172 1.5672 0.1171

Log-Likelihood: -121.96
McFadden R2: 0.94953

Likelihood ratio test : chisq = 4588.8

Table 3: Selected Model Results. Significance code(p-value threshold,
label): 0 ”***”, 0.001 ”**”, 0.01 ”*”, 0.05 ”.”, 0.1 ” ”
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5.3 Effects of Choice Individualization via Goal Programming
Goal programming plays a crucial role of improving the performance for the estimation. The-
oretically the initial choice set sampled from others’ reported patterns is the best bet we have
for minimizing D-error. However, it is far from perfect because essentially the alternatives are
patterns of others. It does give a rough idea how the pattern of this particular person may look
like but it doesn’t give much implication on the details (Link travel time, social economic at-
tributes, etc). The following and graph give the experimental results of the MNL performance
before and after goal programming process:
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Figure 6: Examples for Discussion of Attributes

The choice individualization improves the estimation results significantly, particularly for
Model where new disutility terms of time outside home and average tour delay are introduced.
Details of estimation results are available in Appendix.
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6 Conclusion
This paper develops an estimation framework based on Random Utility Theory for the well-
known Household Activity Pattern Problem (HAPP). Based on the realization that travelers’
activity-travel decisions form a continuous line in space and time, the HAPP is treated as a
pattern selection procedure. In addition to providing theoretical basis of heterogeneous individ-
uals’ decision making, RUT based estimation generates an unique identified set of parameters
which is more suited for forecasting capability of HAPP.

The proposed framework includes three components. In Choice Set Generation we select
one alternative pattern from each pattern cluster found in the data set that are distinctively dif-
ferent. We select patterns that will minimize the D-error based on a genetic algorithm. Then
we individualize choice set alternatives in Choice Set Individualization based on a goal pro-
gramming that will create a feasible pattern as close to the selected sample pattern. The goal
programming formulation contains constraints of individuals’ temporal and spatial constraints.
This choice individualization step is found to be significant in increasing the fit of the MNL
estimation. For the MNL Estimation, overlap among alternatives is treated as the commodity
factor (CF) as it is in C-logit or path size logit used in route choice set generation problems.
Both travel disuitliy terms and activity participation utility gains are found to be significant.

7 Acknowledgment
This work, in part, has been funded by the Region II University Transportation Research Center
(UTRC) and the National Science Foundation (NSF). Authors are grateful for their generous
support.

23



References
Allahviranloo, M., R. Regue, and W. Recker (2014). Pattern clustering and activity inference.

In Transportation Research Board 93rd Annual Meeting, Number 14-1274.

Arentze, T. A. and H. J. Timmermans (2004). A learning-based transportation oriented simula-
tion system. Transportation Research Part B: Methodological 38(7), 613–633.

Bekhor, S., M. E. Ben-Akiva, and M. S. Ramming (2006). Evaluation of choice set generation
algorithms for route choice models. Annals of Operations Research 144(1), 235–247.

Bellemans, T., B. Kochan, D. Janssens, G. Wets, T. Arentze, and H. Timmermans (2010).
Implementation framework and development trajectory of feathers activity-based simula-
tion platform. Transportation Research Record: Journal of the Transportation Research
Board (2175), 111–119.

Ben-Akiva, M. E. and S. R. Lerman (1985). Discrete choice analysis: theory and application
to travel demand, Volume 9. MIT press.

Bhat, C. R., J. Y. Guo, S. Srinivasan, and A. Sivakumar (2004). Comprehensive econometric
microsimulator for daily activity-travel patterns. Transportation Research Record: Journal
of the Transportation Research Board 1894(1), 57–66.

Chow, J. Y. (2014). Activity-based travel scenario analysis with routing problem reoptimization.
Computer-Aided Civil and Infrastructure Engineering 29(2), 91–106.

Chow, J. Y. and S. Djavadian (2015). Activity-based market equilibrium for capacitated multi-
modal transport systems. Transportation Research Part C: Emerging Technologies 59, 2–18.

Chow, J. Y. and A. E. Nurumbetova (2015). A multi-day activity-based inventory routing model
with space–time–needs constraints. Transportmetrica A: Transport Science 11(3), 243–269.

Chow, J. Y. and W. W. Recker (2012). Inverse optimization with endogenous arrival time
constraints to calibrate the household activity pattern problem. Transportation Research Part
B: Methodological 46(3), 463–479.

Gan, L. P. and W. Recker (2008). A mathematical programming formulation of the household
activity rescheduling problem. Transportation Research Part B: Methodological 42(6), 571–
606.

Gan, L. P. and W. Recker (2013). Stochastic preplanned household activity pattern problem
with uncertain activity participation (shapp). Transportation Science 47(3), 439–454.
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8 Appendix

Effect of Goal Programming Stage on Estimation Results
As we keep revising the travel disutility terms, the performance of MNL tends to become better
in terms of model fit (McFadden R2) and t statistics (Number of statistically significant vari-
ables), which gives an illustration of the necessity of making these changes. We can see that
the model fit is generally low before goal programming. It is expected so because of the lack
of implication on personal details. The model fit as well as the number of significant variables
tends to increase dramatically after goal programming.
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Index Attributes Estimate St. Error t-value Pr(> |t|) Significance

Model 1:
2:(intercept) -0.2645 0.1409 -1.8764 0.0606 .
3:(intercept) 2.3370 0.0932 25.0519 0.0000 ***
4:(intercept) 0.8611 0.1271 6.7705 0.0000 ***
5:(intercept) -0.4220 0.1456 -2.8982 0.0037 **

Work 0.0276 0.0238 1.1568 0.2473
Personal 0.0357 0.0313 1.1390 0.2547
Shopping 0.0341 0.0512 0.6662 0.5052

TravelTime 0.0032 0.0387 0.0841 0.9329
Extent -0.0233 0.0187 -1.2477 0.2121

TourDelay (Original) 0.0138 0.0055 2.4870 0.0128 *
Overlap 8.1533 0.6515 12.5146 0.0000 ***

Log-Likelihood: -2251.6
McFadden R2: 0.04355

Likelihood ratio test : chisq = 205.05

Model 2:

2:(intercept) -0.1417 0.1405 -1.0090 0.3129
3:(intercept) 2.3336 0.0920 25.3386 0.0000 ***
4:(intercept) 1.0348 0.1285 8.0507 0.0000 ***
5:(intercept) -0.2871 0.1450 -1.9797 0.0477 *

WorkDuration 0.0171 0.0221 0.7738 0.4390
Personal 0.0284 0.0287 0.9910 0.3216
Shopping 0.0080 0.0486 0.1663 0.8679

TravelTime -0.0675 0.0395 -1.7066 0.0878 .
Extent -0.0273 0.0189 -1.4438 0.1487

TourDelay (Modified) 0.1241 0.0254 4.8752 0.0000 ***
Overlap 8.3338 0.6329 13.1668 0.0000 ***

Log-Likelihood: -2266.4
McFadden R2: 0.050173

Likelihood ratio test : chisq = 239.44
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Index Attributes Estimate St. Error t-value Pr(> |t|) Significance

Model 3:

2:(intercept) -0.2265 0.1354 -1.6725 0.0944 .
3:(intercept) 2.3366 0.0907 25.7372 0.0000 ***
4:(intercept) 0.9521 0.1273 7.4783 0.0000 ***
5:(intercept) -0.2027 0.1396 -1.4516 0.1466

Work -0.0617 0.0163 -3.7781 0.0001 ***
Personal -0.0570 0.0221 -2.5725 0.0100 *
Shopping -0.0461 0.0453 -1.0179 0.3087

TravelTime -0.0675 0.0358 -1.8870 0.0591 .
TimeOutsideHome 0.0641 0.0126 5.0537 0.0000 ***

TourDelay (Modified) 0.0772 0.0207 3.7204 0.0001 ***
Overlap 7.7558 0.6255 12.3979 0.0000 ***

Log-Likelihood: -2309.8
McFadden R2: 0.044114

Likelihood ratio test : chisq = 213.19

Table 4: Model Results before Goal Programming Process. Signifi-
cance code(p-value threshold, label): 0 ”***”, 0.001 ”**”, 0.01 ”*”,
0.05 ”.”, 0.1 ” ”
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